已知随机变量X服从均值为μ,方差为σ²的正态分布,则以下哪个选项表示P(X > μ)?

答案解析

核心考点是正态分布的对称性。正态分布的概率密度函数关于均值对称。P(X > μ) 表示随机变量 X 大于均值 μ 的概率。由于正态分布关于均值对称,因此,X 大于均值 μ 的概率与 X 小于均值 μ 的概率相等,且两者之和为1。 因此 P(X > μ) = 0.5。选项 C 正确。选项A、B和D的值不符合正态分布的概率分布规律。 **解题思路分析:** 利用正态分布的对称性进行判断。 **选项分析:** * A: 0,正态分布中,概率不可能为0 * B: 0.25,正态分布关于均值对称,大于均值概率应为0.5 * C: 0.5, 正确答案。 * D: 1,正态分布中,概率不可能为1 **易错点提醒:** 正态分布的对称性,容易将P(X>μ)理解为0或1,忽略对称性和概率的定义。
正确答案:C
随机推荐
开始刷题